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An initial value method is presented for the calculation of characteristic lengths and 
characteristic functions of systems of ordinary differential equations. Very general 
nonseparated boundary conditions can be handled and the equations tend to be quite 
stable numerically. Numerical examples are presented which demonstrate the efficacy 
of the method. 

1. INTR~DuOTI~N 

The method of invariant imbedding has been used extensively to compute the 
characteristic lengths and eigenvalues of second order problems [ 10, 12, 141. 
Recently the calculation of characteristic lengths, eigenvalues and eigenfunctions 
for N-th order systems of equations has begun to attract more attention, particularly 
in the areas of structural mechanics [2,6] quantum mechanics [4,7] and nuclear 
physics [3]. It soon became evident that many of the classical techniques, such as 
the phase function approach and the implicit finite difference scheme, lose some 
of their appeal since they are either difficult to generalize to systems or require 
large blocks of storage. Whereas many techniques do not easily generalize to 
systems, the invariant imbedding approach has a straightforward generalization 
to systems. The primary feature of the method discussed here is that the boundary 
value problems encountered are transformed into initial value problems which 
tend to be quite stable numerically. Hence, the method is ideally suited for im- 
plementation on modern computers. The reader is referred to [13] for an extensive 
bibliography on the subject of invariant imbedding. 

In this paper we shall give a general development of the method for systems of 
equations. In Section 2 we shall derive the method for N-th order systems with 
simple separated boundary conditions. Then in Section 3 we shall generalize the 
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method to handle problems with very general boundary conditions. A brief 
discussion of multiple eigenfunctions is presented in Section 4. Two pertinent 
numerical examples are discussed in Section 6 and in the last section we present 
our conclusions and suggestions for future study. 

2. CHARACTERISTIC LENGTHS FOR N-TH ORDER SYSTEMS 

Let us consider the system 

qz) = A(z)E(z) + B(z)iqz), (2.la) 
-i?(z) = C(z)U(z) + D(z)U(z), (2.lb) 

subject to 
U(0) = 0, (2.2a) 
ii(x) = 0, (2.2b) 

where ti and 6 are n-vectors, the coefficients A, B, C, D are IZ x IZ matrix functions 
of z and a parameter X. We assume, for a tixed value of h, that the coefficients are 
such that there exist a countable number of values of x such that (2.1-2.2) has a 
nontrivial solution and that all initial value problems for (2.1) have unique solutions 

The Riccati transformation for the above system is given by 

U(z) = R,(z)fi(z), (2.3) 

where R1 is an n x n matrix function. A set of more general transformations will 
be discussed in the next section. Although the above transformation is valid, we 
simply do not have enough information available to derive the matrix differential 
equation satisfied by R,(z). In order to circumvent this problem, we must tempor- 
arily consider a more general problem. That is, we consider the system 

U’(z) = A(z)U(z) + B(z)V(z) (2.4a) 
- V’(z) = C(z) U(z) + D(z) V(z), (2.4b) 

subject to 
U(0) = 0, (2.5a) 
V(0) = I, (2Sb) 

where U and Y are n x n matrices, I is the n x n identity matrix and A, B, C, D 
are as given in (2.1). In terms of the matrix functions U and V, the transformation 
in (2.3) becomes 

WI = R,(z) l/o, CW 

58x/12/3-4 
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where R,(z) is the same as in (2.3). The relationships between 5, V and U, V are 
given by 

U(z) = U(z)fi(O), (2.7a) 

V(z) = V(z)V(O). (2.7b) 

Now we can proceed to derive the matrix differential equation for R, . Since 
we are dealing with matrices, the order of operation must be carefully observed. 

If we differentiate in (2.6), we get 

U'(z) = R,'(z) V(z) + R,(z)V'(z). (2.8) 

Substituting (2.4a) into (2.8), using (2.6) and simplifying, we get 

{R,'(z) - B(z) - A(z)R,(z) - R,(z)D(z) - R,(z)C(z)R,(z)}V(z) = 0. (2.9) 

Since V(z) is nonsingular, at least in some neighborhood of the origin, it follows 
that the terms in braces must be zero. (It is now clear why we had to consider the 
more general matrix equations (2.4-2.5)). Thus we have 

R,‘(z) = B(z) + Nz)Rdz> + &W(z) + &(4C(4&(4. 

The initial condition for (2.10) is 

W-9 = 0, 

(2.10) 

(2.11) 

which follows by evaluating (2.6) at z = 0. 
In order to find the characteristic lengths of the problem (2.1-2.2), we evaluate 

(2.3) at z = x and we obtain 

U(x) = 0 = R&+(x). (2.12) 

For a nontrivial solution of (2.1-2.2) to exist, at least one component of C(x) 
must be nonzero. Hence, it follows that at z = x 

det [RI(x)] = 0. (2.13) 

Also, by a reverse argument, it follows that the determinant of R,(z) is zero only 
at the characteristic lengths. 

We cannot, however, simply integrate the matrix differential equation for 
R,(z) until the determinant vanishes. As in the scalar case [lo, 141, the Riccati 
equation has at least one singularity between points where the determinant is zero. 
It may have more than one due to the possible presence of several linearly indepen- 
dent solutions of (2.1-2.2) for certain values of the parameter A. Hence, we shall 
temporarily assume that, for each value of h, there is only one characteristic 
function of (2. I-2.2)and defer the discussion of multiple eigenfunctions to Section 4. 
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In order to avoid the points where det [R,(x)] is infinite, we detlne the inverse 
transformation by 

U(Z) = S,(z)U(z), (2.14) 

where S,(z) is an n x IZ matrix. In order to derive the differential equation for the 
S,(z) function, we must again use the techniques discussed earlier. The equation is 

-&‘(z) = C(z) + Al + ~(4&(z) + w)~wl(4, (2.15) 

On any common interval of definition it is clear that the matrix functions R,(z) 
and S,(z) are related by 

S,(z) = g(z). (2.16) 

The above relation also serves as the initial condition for S,(z) after a switch 
has been performed. The switching is performed any time the absolute value of 
the determinant of one of the matrix functions exceeds some predetermined, usually 
large, value. 

It is clear that if we evaluate (2.14) at z = z1 , where V(zJ = 0, that we obtain 

0 = S,(z,)U(z,). (2.17) 

For this system of equations to have a nontrivial solution, it is necessary and 
suiIicient that 

det [S,(z,)] = 0 (2.18) 

Hence, we are also able to simultaneously compute the values of zi where (2.1) is 
subject to the boundary conditions 

ii(O) = 0, (2. I9a) 
ti(Z<) = 0, (2.19b) 

has a nontrivial solution. 

3. MORE GENERAL BOUNDARY CONDITIONS 

If the boundary conditions are complicated, then a set of more general trans- 
formations must be introduced. Suppose we wish to find the characteristic lengths 
for (2.1) subject to the boundary conditions 

Qw) + plqo) + y&$x) + S,fi(x) = 0, (3.la) 

%fi(O) + pzqo) + y&qx) + Q(x) = 0, (3.1b) 

where ai , fli , yi , ai (i = 1, 2) are y1 x IZ matrices. 
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Since f(0) may be nonzero and, in fact, unknown, we must modify our R&ati 
transformation of (2.3). The new transformation, which we shall refer to as the 
generalized Riccati transformation, is given by 

ii(z) = R,(z)ij(z) + Rs(z)fi(O). 

In addition, we introduce the recovery transformation 

(3.2a) 

@) = Q&F@) + QzWK9. (3.2b) 

where RI , Q, are as before and R, , Q, are n x n matrices which account for the 
fact that C(O) will, in general, not be zero. The differential equations for RI , 
Rz , Q1 , and Q2 are derived in a similar fashion to those derived earlier in Section 2 
and they are 

R,‘(z) = W + 44W) + &WW + &(z)C(z)R,(z), (3.3a) 

R,‘(z) = M(z) + R,WWW, (3.3b) 

Ql’(4 = Qdz)[WUz) + M.41, (3.3c) 

QrY-4 = Q,WWW, (3.3d) 

subject to the initial conditions 

NO) = 0, (3.4a) 

&(O) = 4 (3.4b) 

Ql<O> = I, (3.4c) 
Q&J = 0. (3.4d) 

In order to calculate the characteristic lengths for (3.1) subject to (3.1), we 
view (3.1) and (3.2) as a system 4n equations in the 4n unknowns n(O), C(O), E(X) 
and E(X). In matrix form we have 

I[ (3.5) 

Thus we seek the values of z = x such that 

% A Yl 81 

det(A) = a2 B2 Yz 62 = 0. 

R,(x) 0 --I R,(x) 

Qz(x) --I 0 Qdx> 

(3.6) 



INITIAL VALUE METHOD FOR AN EIGENVALUE PROBLEM 339 

Again we must introduce the inverse Riccati and recovery transformations in 
order to avoid any singularities of the Riccati equation. Thus, at some point z’, 
we write 

i(z) = S,(z)ii(z) + s,(z)qz’), (3.7a) 

ii = T,(z)i.i(z) + Tz(z)5(z’), (3.7b) 

where S, , S, , Tl , and T2 are n x n matrix functions which satisfy the initial 
value problems 

-&w = cc4 + w+w + W&(4 + Slw(z)w), (3.8a) 

--s,‘(z) = P(z) + sdzvwls2(4> (3.8b) 

S,(z’) = 0, (3.8~) 

S,(z') = I, (3.8d) 

--TI’(z) = Tdz&W + WW)l, (3.9a) 

-T,‘(z) = T,W(z)W), (3.9b) 

T,(z') = I, (3.9c) 

T2(z') = 0. (3.9d) 

We must rewrite (3.7) in terms of Z(O) and g(O). We do this by evaluating (3.2) 
at z = z’ and solving for E(z’) and fi(z’). We find 

G(z’) = Q;‘(z’)@(O) - Q,(z’) ii(O)}, (3.1Oa) 

ii = R,(z’) Q;‘(z’) 6(O) + {R,(z’) - R,(z’) Q;‘(z’) Q,(z’)} E(0). (3.1Ob) 

Substitution of these values into (3.7) yields 

ii(z) = S#qz) + S,(z){~,qo) + A&(O)), (3.11a) 

LB, - T,CWsl WI = G(4W + P’zCN - W(O), (3.11b) 

where 

4 = Q;%‘), A, = -Q?W Qz(z’), 

BI = MO Q;%‘), & = VW’) - W’) Q;‘(f) QzWl. 

The matrix Q,(Z) is nonsingular since it is the solution of a linear matrix differential 
equation with nonsingular initial conditions. The boundary conditions (3.la,b) 
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and Eqs. (3.11a,b) evaluated at z = x form a system of 4n equations in 
knowns, E(O), P(O), c(x) and U(X). In matrix form these equations become 

4n un- 

(3.12) 

Thus we have that the characteristic lengths are the values of x such that the 
determinant of the matrix of coefficients in (3.12) is zero. We may summarize our 
results as a theorem. 

THEOFWM 3.1. If the coeficients A, B, C, D are real and such that the solutions 
of (2.la,b) subject to the boundary conditions (3.la,b) have a countable number of 
points xi for which the solutions are nontrivial, then these points correspond to the 
points where the determinant of the matrix of coeficients of 3.50 or (3.12) is zero. 

4. MULTIPLE EIGENFUNCTIONS 

In the case of single second order equations there normally exists only one 
eigenfunction, apart from constant multiples, for each eigenvalue. In fact, the 
only time that multiple eigenfunctions can occur for single second order equations 
is when the boundary conditions are nonseparated, such as being periodic [8]. 
However, for systems the problem is considerably more complicated. There are 
no simple criteria for determining a priori when an eigenvalue of a general n-th 
order equation with prescibed boundary conditions will have several linearly 
independent eigenfunctions. We shall see, however, that the presence of multiple 
eigenfunctions causes no particular problem in our calculational procedure. 

The procedure described in the previous section must be slightly modified since 
the singularities and zeros of the determinant of the matrix of coefficients will 
not necessarily separate one another. This simply implies that the switching process 
should not be performed. The presence of multiple eigenfunctions is easily detected 
since the multiplicity of the roots at x where the determinant is zero indicates the 
multiplicity of the linearly independent eigenfunctions. 

In order to illustrate the behavior of the determinant of the matrix of coefficients 
when a degenerate eigenvalue is present we shall consider three examples. Consider 
the problem 

yiv = kdy, (4.1) 

y(0) = y”(0) = 0 = y(x) = y”(x). (4.2) 
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This particular problem has only simple eigenvalues. For a given value of k, the 
search for the values of x such that (4.1-4.2) has a nontrivial solution amounts 
to finding a value of x such that 

0 = 1 A 1 = 1 RI I = (l/k2) tankx tanhkx. (4.3) 

In Fig. 1 we have plotted the value of I RI I versus the variable z. The values of 
z = x where 1 R, 1 = 0 are easily seen to be multiples of VT. 

The second example 
yi” + 4y = -Ay”, (4.4) 

y(0) = y”(0) = 0 = y(x) = y”(x), (4.5) 

has the two eigenfunctions sinx and sin2x when X = 5. In this case the determinant 
of I R, I is 

I RI 1 = (l/2) tanx tan2x = sin2x/cos2x. (4.6) 

The above function has a double root at multiples of rr indicating the existence of 
two linearly independent eigenfunctions. These results are illustrated in Fig. 2. 

The last example to be considered is given by 

-y”’ - 49~” = A(14yi” + 36y), (4.7) 

y(0) = y”(0) = y”“(0) = 0 = y(x) = y”(x) = yyx). (4.8) 

4--  

3--  

FIG. 1. Determinant of RI for simple eigenfunction case. 
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+ 

+ 

FIG. 2. Determinant of RI for double eigenfunction case. 

FIG. 3. Determinant of RI for triple eigenfunction case. 
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For h = 1, this problem has the three eigenfunctions sink, k = 1, 2, 3. Here 
the determinant of R, is given by 

1 RI 1 = (l/6) tanx tan2x tan3x = sirPx(3 - 4sin2x)/3 cosx cos2x(4 cos2x - 3). (4.9) 

The determinant of RI is plotted in Fig. 3. Notice that at multiples of 7~, the 
determinant of R, has a triple root indicating the existence of three linearly in- 
dependent eigenfunctions for X = 1. 

5. NUMERICAL EXAMPLES 

We shall consider several examples of systems of various orders. Extreme 
accuracy was not attempted since the studies were primarily of a feasibility nature. 
All of the examples were generated with a single program utilizing a standard 
order Runge-Kutta integration scheme with fixed step size on a CDC-6600. 

EXAMPLE 1. We wish to discuss the calculation of the characteristic lengths 
for the problem 

y’l~’ = ky, 

Y(O) = 0, Y(X) = 0, 
p”‘(o) = 0 , yC2i'(x) = 0 , i = 1, 2 ,...) 50. 

(5.la) 

(5.lb) 

This example was chosen to demonstrate the feasibility of the method for high 
order systems which occur in the study of multigroup diffusion equations of 
neutron physics. For k = 1, the characteristic lengths are simply x, = 117~. The 
results for the first three characteristic lengths are 

true value calculated value 

x1 = 3.141593 3.141591 
x2 = 6.283185 6.283177 
x3 = 9.424780 9.424772 

EXAMPLE 2. We shall now demonstrate how the method can be used to 
compute the eigenvalues or characteristic lengths for certain integrodifferential 
equations. Consider the equation 

(sgn s) $$ (z, s) + a(s) n(z, s) = xk(s) sf, n(z, s’) ds’, o<z<x, (5.2a) 
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subject to the conditions 

n(0, s) = 0, O<s<l, (5.2b) 

n(x, s) = 0, -1 <s<o, (5.2~) 

where a(s) and k(s) are real piecewise continuous functions on ] s ) < 1. For 
Iixed A, we wish to compute the interval lengths x such that (5.2) has a nontrivial 
solution. Equations of the above form arise in the study of particle transport in 
a slab [5, 9, 111. 

In order to apply our techniques to this type of problem we make the following 
substitutions 

u(z, 4 = n(z, s>, when s > 0, (5.3a) 

4z, 4 = n(z, s>, when s < 0. (5.3b) 

Then (5.2) can be written as 

g (z, s) + a(s) u(z, s) = hk(s) l/o1 u(z, s’) ds’ + /:l v(z, s’) ds’/, (5.4a) 

- 2 (z, s) + a(s) u(z, s) = M(s) Is,’ u(z, s’) ds’ + [;l v(z, s’) a%‘/, (5.4b) 

u(0, s) = 0, (5.4c) 

u(x, s) = 0. (5.4d) 

The integral are replaced with some type of numerical quadrature, such as Gaussian 
quadrature, and then (5.4) becomes a system of ordinary differential equations 
of the form 

ii’ = AI + BE, (5.5a) 

-8 = Cii+ DC, (5.5b) 

U(0) = 0, (5.5c) 

V(x) = 0. (5.5d) 

We shall consider two examples of this class of problem. The first example has 
been studied by Wing [16] and Allen [I]. Let 

44 = ISI, 

k(s) = r5W 

The results of our computation are compared in Table I with those obtained by 
Allen and Wing. 
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TABLE I 

Scott Wing Allen 

x Xl Xl Xl 
40 .12687 .13672 .1318 

30 .16962 NR .1766 

20 .25581 .26562 .2680 

10 .52000 .52930 .5452 

5 1.0744 1.08398 1.1292 

2 2.9617 2.97266 NR 

The second example of the integrodifferential equation type is the Boltzmann 
equation for particle transport in a slab where 

44 = l/l s I, 

k(s) = l/2 I S I. 

We shall compare our results with two separate techniques. Wing [ 151 has perform- 
ed extensive calculations for upper and lower bounds on the eigenvalues of this 
equation. We present two of his calculations 

x El t% 
.2 .261 .262 

2.0 .783 .785 

where p1 and F1 are, respectively, lower and upper bounds on the first eigenvalue. 
We give our calculations below 

- 
p = -2610 x1 = 0.199937 
p = .2615 x1 = 0.200533 
p = .2620 x1 = 0.201131, 

and 
p = .783 Xl = 1.99978 

p = .784 x1 = 2.00927 
p = .785 xl = 2.01883, 

where p = l/h in (5.20). 

Our calculations are obviously consistent with those of Wing. The last comparison 
is made with the results of Carlson and Bell [5] on the calculation of the critical 
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dimension of a particle multiplying medium in slab geometry. We emphasize 
that criticality type of computations are ideally suited to the invariant imbedding 
approach. 

h Scott Carlson and Bell 

2.0 .62205 .6216 

The result of Carlson and Bell was obtained using a very sophisticated variational 
approach. 

6. CONCLUSIONS AND FUTURE RESEARCH 

In this paper we have presented a mathematical technique for analyzing the 
eigenvalue or eigenlength problem for ordinary differential equations. The technique 
is capable of handling problems where the eigenvalue parameter appears in a 
nonlinear fashion, various types of singularities, and very general boundary 
conditions including periodic conditions [14]. In addition, the method generalizes 
to systems in a straightforward manner. All of the differential equations of the 
invariant imbedding technique are initial valued and tend to be quite stable 
numerically. 

There are a number of features of the technique which warrant future study. 
An interesting generalization would be to problems having complex coefficients. 
These arise quite frequently in the study of stability of fluid flow. 

In the case of second order problems, the boundary conditions must be periodic 
for an eigenvalue to have more than one eigenfunction associated with it. However, 
the periodicity is not necessary in the case of systems. There is very little known 
about when to expect degenerate eigenvalues for systems. It is possible that the 
analysis might be paralleled to that of linear algebraic equations using the formula,- 
tion given by (3.5) or (3.12). The numerical experiments presented in Section 5 
indicate that multiple eigenfunctions cause no particular problem. 

Perhaps the most significant area for future research would be to the generaliza- 
tion of the ideas of this paper to the study of eigenvalues for partial differential 
equations. 
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